首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4172篇
  免费   232篇
  2022年   9篇
  2021年   47篇
  2020年   22篇
  2019年   45篇
  2018年   58篇
  2017年   50篇
  2016年   106篇
  2015年   120篇
  2014年   181篇
  2013年   238篇
  2012年   237篇
  2011年   257篇
  2010年   148篇
  2009年   137篇
  2008年   256篇
  2007年   233篇
  2006年   220篇
  2005年   221篇
  2004年   247篇
  2003年   248篇
  2002年   234篇
  2001年   72篇
  2000年   77篇
  1999年   81篇
  1998年   63篇
  1997年   57篇
  1996年   40篇
  1995年   68篇
  1994年   33篇
  1993年   35篇
  1992年   49篇
  1991年   47篇
  1990年   42篇
  1989年   42篇
  1988年   26篇
  1987年   30篇
  1986年   34篇
  1985年   35篇
  1984年   39篇
  1983年   27篇
  1982年   19篇
  1981年   12篇
  1980年   19篇
  1979年   23篇
  1978年   15篇
  1977年   14篇
  1976年   11篇
  1975年   14篇
  1974年   12篇
  1973年   16篇
排序方式: 共有4404条查询结果,搜索用时 31 毫秒
991.
We prepared β-sheet-rich recombinant full-length prion protein (β-form PrP) (Jackson, G. S., Hosszu, L. L., Power, A., Hill, A. F., Kenney, J., Saibil, H., Craven, C. J., Waltho, J. P., Clarke, A. R., and Collinge, J. (1999) Science 283, 1935-1937). Using this β-form PrP and a human single chain Fv-displaying phage library, we have established a human IgG1 antibody specific to β-form but not α-form PrP, PRB7 IgG. When prion-infected ScN2a cells were cultured with PRB7 IgG, they generated and accumulated PRB7-binding granules in the cytoplasm with time, consequently becoming apoptotic cells bearing very large PRB7-bound aggregates. The SAF32 antibody recognizing the N-terminal octarepeat region of full-length PrP stained distinct granules in these cells as determined by confocal laser microscopy observation. When the accumulation of proteinase K-resistant PrP was examined in prion-infected ScN2a cells cultured in the presence of PRB7 IgG or SAF32, it was strongly inhibited by SAF32 but not at all by PRB7 IgG. Thus, we demonstrated direct evidence of the generation and accumulation of β-sheet-rich PrP in ScN2a cells de novo. These results suggest first that PRB7-bound PrP is not responsible for the accumulation of β-form PrP aggregates, which are rather an end product resulting in the triggering of apoptotic cell death, and second that SAF32-bound PrP lacking the PRB7-recognizing β-form may represent so-called PrP(Sc) with prion propagation activity. PRB7 is the first human antibody specific to β-form PrP and has become a powerful tool for the characterization of the biochemical nature of prion and its pathology.  相似文献   
992.
Two members of the N-acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST) family, GlcNAc6ST-1 and GlcNAc6ST-2, function in the biosynthesis of 6-sulfo sialyl Lewis X-capped glycoproteins expressed on high endothelial venules (HEVs) in secondary lymphoid organs. Thus, both enzymes play a critical role in L-selectin-expressing lymphocyte homing. Human GlcNAc6ST-1 is encoded by a 1593-bp open reading frame exhibiting two 5' in-frame methionine codons spaced 141 bp apart. Both resemble the consensus sequence for translation initiation. Thus, it has been hypothesized that both long and short forms of GlcNAc6ST-1 may be present, although endogenous expression of either form has not been confirmed in humans. Here, the authors developed an antibody recognizing amino acid residues between the first two human GlcNAc6ST-1 methionines. This antibody specifically recognizes the long form of the enzyme, a finding validated by Western blot analysis and immunofluorescence cytochemistry of HeLa cells misexpressing long and/or short forms of human GlcNAc6ST-1. Using this antibody, the authors carried out immunofluorescence histochemistry of human lymph node tissue sections and found endogenous expression of the long form of the enzyme in human tissue, predominantly in the trans-Golgi network of endothelial cells that form HEVs.  相似文献   
993.
P5, one of the protein disulphide isomerase (PDI) family members, catalyses disulphide bond formation in proteins and exhibits molecular chaperone and calcium binding activities in vitro, whereas its physiological significance remains controversial. Recently, we have reported that P5 localizes not only in the ER but also in mitochondria, although it remains unclear so far about its physiological significance(s) of its dual localization. Here we report that H(2)O(2)- or rotenone-induced cell death is suppressed in MTS-P5 cells, which stably express P5 in mitochondria. H(2)O(2)-induced cell death in Saos-2 cells occurred, in large part, through caspase-independent and poly(ADP-ribose) polymerase (PARP)-dependent manner. In MTS-P5 cells challenged with H(2)O(2) treatment, PARP was still activated, whereas release of cytochrome c or apoptosis-inducing factor and intramitochondrial superoxide generation were suppressed. We also found that mitochondrial P5 was in close contact with citrate synthase and maintained large parts of its activity under H(2)O(2) exposure. These results suggest that mitochondrial P5 may upregulate tricarboxylic acid cycle and possibly, other intramitochondrial metabolism.  相似文献   
994.
995.
The vertebrate calmodulin is configured with two structurally independent globular lobes in N- and C-terminus, and a flexible central linker. Distinctly, two lobes of calmodulin from Saccharomyces cerevisiae (yCaM) interact and influence the Ca(2+)-binding profile of each other. We explored this further using the mutant proteins with eliminated Ca(2+)-binding ability in one of the lobes and found that the Ca(2+)-bound N-lobe associates with the Ca(2+)-free C-lobe to gain the Ca(2+) affinity of a wild-type level. Next, analysing series of C-terminal residue truncation mutant, we found that the truncation of C-terminal three residues induce the hyper Ca(2+) affinity. These residues are also important for the general structural behaviour of calmodulin, such as Ca(2+)-induced slow mobility shift in polyacrylamide gel electrophoresis and for the ability to activate Cmk1p (yeast calmodulin kinase). These suggest: (i) when Ca(2+) occupies only N-lobe, two lobes interact and form the stable intermediate leading to a proper level of Ca(2+) affinity; (ii) the C-terminal three residues are required to prohibit abnormal stabilization of the intermediate promoting abnormally high Ca(2+) affinity and for recognition of target enzymes. A model for Ca(2+) and target bindings of yCaM is proposed. Evolutional aspect concerning the biological significance of this model was discussed.  相似文献   
996.
997.
998.
Copper (Cu) is essential for development and proliferation, yet the cellular requirements for Cu in these processes are not well defined. We report that Cu plays an unanticipated role in the mitogen-activated protein (MAP) kinase pathway. Ablation of the Ctr1 high-affinity Cu transporter in flies and mouse cells, mutation of Ctr1, and Cu chelators all reduce the ability of the MAP kinase kinase Mek1 to phosphorylate the MAP kinase Erk. Moreover, mice bearing a cardiac-tissue-specific knockout of Ctr1 are deficient in Erk phosphorylation in cardiac tissue. in vitro investigations reveal that recombinant Mek1 binds two Cu atoms with high affinity and that Cu enhances Mek1 phosphorylation of Erk in a dose-dependent fashion. Coimmunoprecipitation experiments suggest that Cu is important for promoting the Mek1-Erk physical interaction that precedes the phosphorylation of Erk by Mek1. These results demonstrate a role for Ctr1 and Cu in activating a pathway well known to play a key role in normal physiology and in cancer.  相似文献   
999.
This review summarizes the effects of neuroinflammatory stress on the subventricular zone (SVZ), where new neurons are constitutively produced in the adult brain, especially focusing on the relation with Parkinson's disease (PD), because the SVZ is under the control of dopaminergic afferents from the substantia nigra (SN). In Lewy bodies-positive-PD, microglia is known to phagocytoze aggregated α-synuclein, resulting in the release of inflammatory cytokines. The neurogenesis in the SVZ should be affected in PD brain by the neuroinflammatory process. The administration of lipopolysaccaharide is available as an alternative model for microglia-induced loss of dopaminergic neurons and also the impairment of stem cell maintenance. Therefore, the research on the neuroinflammatory process in the SVZ gives us a hint to prevent the outbreak of PD or at least slow the disease process.  相似文献   
1000.
Cytochrome P450 (P450) 17A1 catalyzes the 17α-hydroxylation of progesterone and pregnenolone as well as the subsequent lyase cleavage of both products to generate androgens. However, the selective inhibition of the lyase reactions, particularly with 17α-hydroxy pregnenolone, remains a challenge for the treatment of prostate cancer. Here, we considered the mechanisms of inhibition of drugs that have been developed to inhibit P450 17A1, including ketoconazole, seviteronel, orteronel, and abiraterone, the only approved inhibitor used for prostate cancer therapy, as well as clotrimazole, known to inhibit P450 17A1. All five compounds bound to P450 17A1 in a multistep process, as observed spectrally, over a period of 10 to 30 s. However, no lags were observed for the onset of inhibition in rapid-quench experiments with any of these five compounds. Furthermore, the addition of substrate to inhibitor–P450 17A1 complexes led to an immediate formation of product, without a lag that could be attributed to conformational changes. Although abiraterone has been previously described as showing slow-onset inhibition (t1/2 = 30 min), we observed rapid and strong inhibition. These results are in contrast to inhibitors of P450 3A4, an enzyme with a larger active site in which complete inhibition is not observed with ketoconazole and clotrimazole until the changes are completed. Overall, our results indicate that both P450 17A1 reactions—17α-hydroxylation and lyase activity—are inhibited by the initial binding of any of these inhibitors, even though subsequent conformational changes occur.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号